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Abstract - In this paper, a model of place
cells (PCs) built from precise neurobiologi-
cal data is presented. The robustness of the
model in real indoor and outdoor environ-
ments is tested. Results show that the inter-
play between precise neurobiological mod-
elling and robotic experiments can promote
the understanding of the biological circuitry
and the achievement of very robust robot
navigation algorithms. Short Term Memory
(STM), soft competition and sparse coding
are important for both landmark identifica-
tion and computation of PC activities.

I. Introduction

Ethological studies of animal navigation show that
a wide variety of sensors can be used by the ani-
mals to navigate and localize themselves. Among
them, vision allows a very precise, robust and
non intrusive way to navigate. Visual information
can be used for taxon navigation (returning to a
particular landmark) or to recognize a place from
distant landmarks [Gould, 1986]. The different
models of the biological navigation use the azimuth
of the landmarks [Cartwright and Collett, 1983],
or more rarely, their identity or a conjunction of
the two [Arleo and Gerstner, 2000; Bachelder and
Waxman, 1994; Gaussier et al, 2000]. In previous
hippocampal modelization, the discovery of place
cells (PCs) in the rat hippocampus and also in
primates has emphasized the encoding of spatial

cognition and navigation by mammalian brain
[O’Keefe and Nadel, 1978; Squire, 1992]. In a
first model, proposed in 1994, we showed how the
learning of few sensory-motor associations around
a goal location was sufficient for a robot-like agent
to exhibit a robust homing behavior [Gaussier
and Zrehen, 1994] if the environment is simple
(i.e. open field navigation with no need to plan a
detour). A central hypothesis of our most recent
model consideres some aspects of hippocampus
function are devoted to the detection and the fast
learning of transitions between multimodal events
[Gaussier et al, 2002; Banquet et al, 2005]. Hence,
static PCs should exist prior the hippocampus.
Model and experiments show robust PCs can
be built by simple merging the what and where
information coming from the visual system. We
propose the merging could be performed as early
as parahippocampus cortex (in the perirhinal
and parahippocampus cortex: PrPh). The place
recognition could be performed in the entorhinal
cortex (EC: the main input to the hippocampus),
and the dentate gyrus (DG: a substructure of
the hippocampal system). Hippocampus proper
(CA1/CA3) could be devoted to the learning
of transitions. In this paper, we will analyze
the parameters controlling the robustness of
our PCs in real environments. We will show
that going back and forth between robotics and
neurobiological modelling can both help to obtain
a more robust and faster place recognition for
robotics applications and explain why short
term memory (STM) and soft competition mech-



anisms are so important for the brain functioning.

II. Model Description

This section describes a biologically plausible
model of the prehippocampal PCs tested on mani-
fold robotic platforms (Koala, Labo3, Pionner AT),
evolving in open indoor and outdoor environments.
Fig. 1 summarizes the processing chain. The
model was first tested in an open indoor environ-
ment, with a trivial landmarks extraction method.
The choice of the focal points was based on the de-
tection of vertical contrast areas [Gaussier et al,
1997]. To be more efficient, a panoramic CCD
camera using a conic mirror has been recently in-
troduced. This camera allows one shot capture of a
360◦ panoramic image. To eliminate problems in-
duced by luminance variability, the gradient image
is the only visual input of the system (a 1500×240
pixels image extracted from the 640 × 480 pix-
els panoramic image which is originally circular).
The gradient image is then convolved with a DOG
(Difference Of Gaussian) filter to detect curvature
points at low resolution (robust focal points). At
last, a log-polar transform of the local views, ex-
tracted around each focal point, is computed to
improve the pattern recognition when small rota-
tions, and scale variations of the landmarks oc-
cur. The simulated visual system provides both a
what information: the recognition of a 32x32 pix-
els snapshot in log-polar coordinates (that will be
a called local view) [Schwartz, 1980], and a where
information : the azimuth of the focal point (abso-
lute direction obtained with a compass or any sim-
ulation of a vestibular system). What and where
informations are finally merged in a product space
(a matrix of sigma-pi units [Rumelhart and Zipser,
1985] that stands in the model for the PrPh con-
nectivity), with a STM that enables to remember
the merging of previous inputs. .At the beginning
of the sequential exploration of a panorama, the
STM of PrPh is reset. We suppose neurons in EC-
DG learn and recognize the activity of several PrPh
units as a pattern coding for an invariant represen-
tation of a place.
The activity of a PC results from the computation
of the distance between the PrPh pattern learned
and the current PrPh pattern (the distance is com-
puted only on the recruited neurons). Thus, the
activity of the kth PC can be expressed as follow:

Pk =
1

lk

(
NL∑

i=1

ωik.fs(Li).gd(θ
L
ik − θi)

)
(1)

Figure 1: Block diagram of the architecture.
Our architecture is composed of a visual system
that focuses on points of interest and extracts local
views, a merging layer that compresses what and
where information, and a place recognition layer.

with lk =
∑NL
i=1 ωik the number of landmarks used

for the PC k, where ωik = {0, 1} expresses the
fact that landmark i has been used to encode PC
k, with NL the number of learned landmarks, Li
the activity of the landmark i, fs(x) the activation
function of the neurons in the landmark recogni-
tion group (Pr in the model), θLik the learned az-
imuth (coming from the PPC, Posterior Parietal
Cortex, in rodents and primates) of the ith land-
mark for the kth PC, θi the azimuth of the cur-
rent local view interpreted as the landmark i. d is
the angular diffusion parameter which defines the
shape of the function gd(x). At last. The role of
fs(x) and gd(x) is to adapt respectively the dynam-
ics of what and where groups of neurons. They are
defined as follow:

gd(x) =
[
1− |x|d.π

]+

fs(x) = 1
1−s [x− s]+

where [x]+ = x if x > 0, and 0 otherwise .
In the following, we will show that, surprisingly,
the optimization of our model both for indoor and
outdoor navigation leads to propose a more plau-
sible model.

III. Interest of Soft Competition

In this section, it will be illustrated, for the spe-
cific problem of landmarks encoding, the interest of
a more biologically plausible model than a simple
WTA (Winner Take all) at the level of local views
recognition to increase the generalization aptitude
of the place fields.
A first approach to recognize a place is to suppose
each local view corresponds to a single landmark.
When the robot is moving from a place PA to a
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During navigation, two interpretations of the same
landmark can compete and bias place recognition.

place PB , a given landmark L can be perceived as
two distinct visual patterns (L1 or L2). Hence, in
PA, the landmark L should be recognized by the
neuron L1 and by L2 in P2 (see Fig. 2).
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Figure 3: Room used for the experiment of the fig.
5. Crosses represent the learned positions.

A real example, in outdoor environment (see Fig.
4), illustrates two landmarks N and M learned re-
spectively as L1 and L2 in place PA, and as L3 and
L4 in PB. PAPB is 5 meters long. At the middle
place PC between PA and PB, the recognition level
of each learned local view is given. We can see L1

and L3 (or L2 and L4) have almost the same ac-
tivity level and that a strict competition induces a
random choice of the winner, disadvantaging one
of the two PCs.
As the PC activity results from the product be-
tween the recognition level of what and where in-
formation (see eq. (1)), allowing a single winner for
what information is equivalent to impose a maxi-
mum azimuth error for all the other interpreta-

tions, even if others can be valid. It is also equiv-
alent to consider that the landmarks correspond-
ing to all the other interpretations are not present
or not visible. Furthermore, the distance between
learned prototypes shrinks with the increase in the
number of encoded landmarks. Therefore, errors
induced by a strict competition become more fre-
quent (classical problem of clustering). It seems
difficult and not really necessary to assign a sin-
gle label to each local view. Trying to avoid the
ambiguity of the sensorial information seems to be
a mistake. Only the global behavior of the system
matters [Gaussier et al, 2004; Maillard et al, 2005].
Instead of trying to perform an impossible choice,
allowing multiple interpretations of the same view
seems to bring a lot of advantages if the decision
taking, here finding the more proximal place or de-
ciding of the current movement, is able to manage
this kind of coding.

A solution could come from fixing a recognition
threshold (RT), under which the neurons would
not discharge. But it could also be difficult to
optimize this parameter. Moreover, the more the
system encodes landmarks, the higher the number
of neurons whose activity is over this RT will
be (so most of these activities will correspond
to noise). Another simple solution is to fix
a maximum number of interpretations over a
safety RT. All interpretations under this RT will
be considered as wrong. If the system focuses
on a non-learned local view, the RT should be
able to inhibit a large number of neurons. In
order to increase the dynamics of the landmark
neurons output, the activity between RT and 1
can be linearly rescaled between 0 and 1. This is
performed by the activation function fs(x), where
s is in fact the RT. However, the distance between
learned prototypes will decrease each time a new
landmark is encoded. So, the maximal number
of available interpretations has to be correlated
with the number of encoded landmarks. The ratio
W
NL

, with W the maximal number of winning
interpretations and NL the number of encoded
landmarks, must be higher than a given confidence
threshold according to the landmark encoding
method. As example, Fig. 5 shows the place
fields induced by a strict competition, versus a
soft competition. In this experiment, five aligned
places were learned in an indoor room (see fig. 3).
Then, the robot went over the line and PCs activ-
ity was computed at each position. Generalization
is largely increased by using a soft competition.
Using a strict competition prevents place fields
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Figure 4: Learning and recognition of the same landmark by several neurons.
The same landmarksM and N has been learned, for two proximal places (5m distant), as different visual
patterns (upper figures). Hence, in the middle of the two places (lower figure), the landmarks have two
valid interpretations. In place C, the activity level of "L2 and L4" for the landmark M and the activity
level of "L1 and L3" for the landmark N are much lower than the valid interpretations of M and N
(lower than 0.82).

from overlapping (see Fig. 5). This sparse coding
solution allows place fields extension far from the
center of the learned place, without reducing the
precision in its center, as can be seen in biological
EC place cells. This result shows another facet of
the interest of sparse coding in biological systems.

IV. Information Compression

While local views are being extracted (what infor-
mation), PrPh merges their interpretations with
their absolute azimuth (where information). Our
first idea to merge these informations was to use
a product space by means of a neural matrix of
NL × NA neurons, in which each neuron is linked
to one of the NL landmark neurons and one of the
NA azimuth neurons. Activity of the PrPh neu-
rons was given by the product: SPrPhij = SLi ×SAj ,
with SPrPhij the activity of ijth neuron in PrPh,

linked to the output SLi of landmark neuron i and
to the output SAj corresponding to the azimuth j
of landmark i.

Such a coding of the what and where information
is correct, but uses too many ressources and is not
biologically plausible. The ratio between the num-
ber of active neurons in the PrPh matrix and the
number of neurons that are really used by EC-DG
is globally NL×n̄a

NL×n̄a = n̄a
NA

where n̄a is the average
number of different azimuths under which a land-
mark can be seen. For a good precision, NA has to
be high enough (for instance 90 neurons coding for
360◦). Thanks to generalization, the same land-
mark does not need be encoded for too close az-
imuths. So n̄a can be small (3 different azimuths of
a given landmark seems to be a reasonable value).
In this case, the ratio between neurons used in EC
and active neurons is 3

90 .

For the purpose of information compression, it is
not necessary for the PrPh matrix to have more
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Figure 5: Place fields induced by a strict or a soft competition (indoor env.).
PC activities are computed every 2 cm over a line of 4.8 m long (see fig. 3). Places have been learned
every 60 cm. Left figure shows place fields induced by a strict competition. Right figure shows place
fields induced by a soft competition. A strict competition at the level of the landmark recognition does
not allow a good generalization and place fields to overlap.

columns than the maximum number of different
azimuths under which a landmark can be learned
(correlated to n̄a, such as 2× n̄a). But if the con-
nectivity remains unchanged, azimuthal precision
is lost. So, in order to avoid a lost of place field
azimuthal precision, each neuron of the matrix can
be linked to a subset of the neurons in the azimuth
group (not only a single input neuron). In this
way, the same landmark will not be encoded on
different azimuths unless these azimuths are signif-
icantly different. This property is directly derived
from the neighborhood connectivity. At last, the
precise azimuths can be encoded by the connec-
tions between PrPh neurons and the azimuth neu-
ron group Ph. Thus, our merging matrix has fewer
columns (6 columns avoid a landmark to be en-
coded with different azimuths that are closer than
360
6 = 60◦), whereas the azimuthal precision re-

mains the same (90 neurons coding for 360◦). So
the ratio between the number of neurons used by
EC and the total number of neurons in PrPh is
now: n̄a

6 << n̄a
90 . Moreover, there is no active neu-

rons that has not been used by EC.

More precisely, at the beginning, all the connection
weights are set to 0. Neurons are recruited when
a couple landmark-azimuth is encountered: simul-
taneous activation of a landmark neuron i and an
azimuth neuron a(i) triggers the learning of the
corresponding synapses in PrPh. The weight of
the connection between the Π neuron recruited in
PrPh and the corresponding azimuth neuron a(i)
is set to 1 (the connection to the landmark neuron
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Figure 6: Merging connectivity of PrPh.
Each neuron is linked to one landmark neuron and
a neighborhood of azimuth neurons. Only one con-
nection from this neighborhood is set to 1.

i is also set to 1). As only one connection from
Ph has been learned (that means a(i) has a single
value), azimuthal precision is preserved. Finally,
unused neurons can be pruned to further foster the
performances.
This architecture is absolutely equivalent to the
full matrix, but is faster. It uses less memory and
is more biologically plausible than the former ar-
chitecture. Once again, a more plausible model
leads us to a more efficient and faster system.



V. STM in PrPh for Outdoor
Environment
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The functioning of the STM in PrPh can also be
criticized. Indeed, in our first indoor experiments,
the number of visual cues was much higher and
the stability of the features points was much better
than in outdoor environments. The PrPh activity
was reset before the analysis of each new panorama
(curves of Fig. 5 illustrate this method). Unfor-
tunately, the outdoor experiments of place fields
formation led to highly unstable place fields. Vari-
ability was so high that even at the position of a
learned place, the PC activity could be very low
(left curves of Fig. 8). However, it seems that
averaging activities curves or interpolating the lo-
cal maximum would induce better results and fight
against the lack of performance of the landmark
extraction system.
Indeed, the study of the neural network while run-
ning shows that the main problem is the high vari-
ability in the number of learned local views the sys-
tem focuses on step after step. Because the images
are too complex, the mechanism to control the fo-
cus of the attention is unable to guaranty the focus
on learned landmarks (low probability to retrieve
them and therefore to recognize them). The ques-
tion was then: how would it be possible to store
integrated information for a while, in order to fight
against the lack of robustness of the focus system?
Obviously, mammals need not to see, step after
step, every visual cue in their environment, to be
able to navigate. Seeing only a few visual cues from
time to time seems enough to navigate without am-
biguity. The existence of a real STM at the level
of PrPh would allow to remember what was seen
in the previous iterations, and could explain why

mammals do not need to verify step after step the
position of each landmark. STM in PrPh was al-
ready used to store landmark-azimuth associations
during exploration of the visual inputs. PrPh was
reset before the analysis of each new panorama.
However, there is no need to reset so often the
PrPh matrix. Informations merged in PrPh should
remain valid for a while after their integration.
Hence, PrPh STM was increased in order to deal
with the sparse or the incomplete exploration of
the visual environment. By means of a STM in
PrPh, the place fields become robust and allow a
good generalization (see fig. 8). On Fig. 8, we
can also see that in outdoor environment, the place
field are really larger than in indoor environment.
These experimental results confirm the mathemat-
ical model which predicts that the size of the place
fields grows proportionally to the landmarks dis-
tance. For instance, in Fig. 8, the place fields have
a useful diameter of about 25 meters, which is al-
most the size of the environment (the result was of
the same kind in indoor environment).
Thus, this kind of PC allows a homing behavior
and generalization of the sensory-motor learning
over a very important distance. Moreover, our
PCs are incompatible with the features of PCs
found in the hippocampus proper (CA1/CA3 re-
gion). Our results confirm that simple navigation
tasks could be performed by broad prehippocam-
pal PCs, and that hippocampal PCs could be built
from a strong competition between these cells (in
our model, CA3/CA1 neurons predict transitions
between the current place and the next possible
places).

VI. Perspectives and Conclusion

In this paper, it was shown that the interaction
between robotics and neurobiology leads to intro-
duce more biological plausibility in our model, to
increase performance of the system, and to explain
the importance of STM and soft competition in the
brain functioning.
Our results also suggest that, even in outdoor
environment, no Cartesian map is required for
a robust navigation. However, as visual infor-
mation is sometimes limited, iodiothetic informa-
tion could help to disambiguate the recognition
of complex environments, and allothetic informa-
tion could help maintaining a coherent idiothetic
space representation [Arleo and Gerstner, 2000;
Redish and Touretzky, 1997]. But we claim, as
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Figure 8: Place fields with and without STM (outdoor env.).
PC activities are computed every 10 cm over a line of 25 m long (see fig. 7). Places have been learned
every 5 m. Soft competition is used at the level of the landmark recognition. Left figure shows unstable
place fields. Right figure illustrates the interest of a STM. In outdoor environment, the useful diameter
of the place fields is about 25 m.

opposed to other models of hippocampal function
[McNaughton et al, 1996], that visual information
is preponderant. Outdoor experiments have also
shown the interest of a more sophisticated atten-
tional system, that would help identifying and re-
trieving more robust landmarks. Finally, other vi-
sual cues like apparent size or distance deduced
from parallax effects, color and textures informa-
tion, will be taken into account for a better char-
acterization of the landmarks.

Videos are available on http: //www.etis.ensea.fr/
˜neurocyber/Videos/index_videos.html

Acknowledgment

These researches are supported by the Delegation
Generale pour l’Armement (DGA), project no 04
51 022 00 470 27 75. We particularly thank G.
Desilles for his useful collaboration.

References

[Arleo and Gerstner, 2000] A. Arleo and W. Ger-
stner. Spatial cognition and neuro-mimetic
navigation: A model of hippocampal place cell
activity. Biol. Cybern., 83(3):287–299, 2000.

[Bachelder and Waxman, 1994] I.A. Bachelder and
A.M. Waxman. Mobile robot visual mapping and
localization: A view-based neurocomputational
architecture that emulates hippocampal place
learning. Neural Networks, 7(6/7):1083–1099,
1994.

[Banquet et al, 2005] J.P. Banquet, P.Gaussier,
M. Quoy, A. Revel, and Y. Burnod. A hierarchy
of association in hippocampo-cortical systems:
cognitive maps and navigation strategies. Neural
Computation, 17:1339–1384, 2005.

[Cartwright and Collett, 1983] B.A. Cartwright
and T.S. Collett. Landmark learning in bees.
Journal Comp. Physiology, 151:521–543, 1983.

[Gaussier and Zrehen, 1994] P. Gaussier and
S. Zrehen. Navigating with animal brain : a
neural network for landmark identification and
navigation. In Proceedings of Intelligent Vehicles.
Paris IEEE Press, 1994.

[Gaussier et al, 1997] P. Gaussier, C. Joulain,
S. Zrehen, J.P. Banquet, and A. Revel. Visual
navigation in an open environement without map.
In International Conference on Intelligent Robots
and Systems - IROS’97, pages 545–550, Grenoble,
France, September 1997. IEEE/RSJ.

[Gaussier et al, 2000] P. Gaussier, C. Joulain, J.P.
Banquet, S. Lepretre, and A. Revel. The visual



homing problem: an example of robotics/biology
cross fertilization. Robotics and autonomous
system, 30:155–180, 2000.

[Gaussier et al, 2002] P. Gaussier, A. Revel, J.P.
Banquet, and V. Babeau. From view cells and
place cells to cognitive map learning: processing
stages of the hippocampal system. Biological
Cybernetics, 86:15–28, 2002.

[Gaussier et al, 2004] P. Gaussier, J.C. Baccon,
K. Prepin, J. Nadel, and L. Hafemeister. Formal-
ization of recognition, affordances and learning in
isolated or interacting animats. In From Animals
to Animats: SAB’04, pages 57–66, Cambridge,
MA, 2004. MIT Press.

[Gould, 1986] J.L. Gould. The biology of learning.
Annual Review of Psychology, 37:163–192, 1986.

[McNaughton et al, 1996] B.L. McNaughton,
C.A. Barnes, J. Gerrard, K. Gothard, M. Jung,
J. Knierim, H. Kudrimoti, Y. Qin, W. Skagges,
M. Suster, and K. Weaver. Deciphering the
hippocampal polyglot: the hippocampus as a
path integration system. Journal of Experimental
Biology, 119:173–185, 1996.

[Maillard et al, 2005] M. Maillard, O. Gapenne,
L. Hafemeister, and P. Gaussier. Perception as
a dynamical sensori-motor attraction basin. In
ECAL, in Press. Springer-Verlag, 2005.

[O’Keefe and Nadel, 1978] J.O’Keefe and N. Nadel.
The hippocampus as a cognitive map. Clarendon
Press, Oxford, 1978.

[Redish and Touretzky, 1997] A.D. Redish and
D.S. Touretzky. Cognitive maps beyond the
hippocampus. Hippocampus, 7(1):15–35, 1997.

[Rumelhart and Zipser, 1985] D.E. Rumelhart
and D. Zipser. Feature discovery by competitive
learning. Cognitive Science, 9:75–112, 1985.

[Schwartz, 1980] L. Schwartz. Computational
anatomy and functional architecture of striate
cortex: a spatial mapping approach to perceptual
coding. Vision Res., 20:645–669, 1980.

[Squire, 1992] L.R. Squire. Memory and the
hippocampus: A synthesis from findins with rats,
monkeys, and humans. Psychological Review,

99:143–145, 1992.


