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Abstract— For the last decade, we have developed a bio-
inspired control architecture for the autonomous navigation of
mobile robots. The robot is able to learn to reproduce a homing or
a route following behavior by interacting with a human teacher.
However, the system strongly relies on the estimation of the
orientation provided by a magnetic compass. We propose in this
paper a model of visual compass in order to avoid the use of
a magnetic compass. Each online learned visual landmark is
associated with the shift between its position in the visualfield
and a direction of reference. The projection and the integration of
these data on a one dimensional neural field allow to build a visual
compass which accurately reconstructs the local referencein the
neighborhood of the locations of learning. We also investigate
how this visual compass can be used to calibrate an orientation
system, which could be maintained by the odometry. Finally,the
global system is validated in an experiment of route learning.

I. I NTRODUCTION

Since the first algorithms for autonomous mobile robot
navigation, the problem of the orientation estimation has
always been a central question. The methods to estimate the
orientation are various. Some methods can provide a direct
estimation of the orientation such as a magnetic compass or
the tracking of a very distant and non ambiguous landmark
(polar star method) whereas others require the integration
of rotational stimuli: odometry on the wheel encoders or
accelerometers or inertial centrals or optical flow measure.
Modern GPS and DGPS are also able to provide a good
estimation of the direction of the movement by integrating the
position of the mobile. Each method has unfortunately some
drawbacks:

• The magnetic compass is not usable in planetary ex-
ploration applications (on Mars for example where no
magnetic field exists) or near electrical equipments or on
a ferrous ground that can deviate the magnetic field of
the earth.

• A distant and non ambiguous landmark is not always
visible: tracking the sun during the whole day, or find-
ing a pertinent landmark in indoor environments seems
difficult.

• The orientation estimation computed by the integration
of noisy rotational measurements always suffers from a
cumulative drift (need of recalibration).

• GPS is not always available or can have some problems
in planetary exploration applications, in urban canyon (in
the environment of the fig 2 b for instance), in indoor
environments...

From the biological point of view, neuro-ethological stud-
ies have highlighted that the capability of path integration
in animals relies on two different sources of information,
namely allothetic information gathering the information from
the external world (vision, audition, touch, smell) and idio-
thetic information which is endogenous (proprioception ofthe
actuator and vestibular information) [1]. These two sources are
supposed to be merged in a global path integration system.
In parallel, neurobiology has also shown the existence of
head direction cells (HD-cells) in different areas of the brain
[2]. Some of these cells seem to provide a purely allothetic
estimation of the head direction whereas others rely on id-
iothetic information. The discovery of the grid-cells in the
entorhinal cortex of the rat [3] confirms the hypothesis that
the path integration system could be calibrated by allothetic
cues (a constellation of landmarks for example) and could
be maintained by the integration of idiothetic information.
Indeed, the regular spacing of the grid even in the dark
strongly suggests an integration of information coming from
vestibular or proprioceptive stimuli. Moreover, the grid cells
rotate linearly with the rotation of the visual cues which
indicates that the path integration system is visually anchored.

This paper presents first a brief review of previous works
which addressed the problems of the autonomous navigation
and/or the orientation estimation. Next, we propose a bio-
inspired architecture for visual navigation and we provide
some results of route learning through human-robot interac-
tions in indoor and outdoor environments with a magnetic
compass used for the estimation of the orientation. In order
to avoid the problems of the magnetic compass, we propose a
model of a visual compass able to reconstruct an orientation
by means of a set of visual landmarks. The accuracy of the
allothetic estimation will be highlighted by comparing the
allothetic estimation with the value of the magnetic compass.
We finally address the problem of the merging of the allothetic
and idiothetic information in a global orientation system.The



vision enables to calibrate the orientation system which is
maintained by the odometry. We finally validate our global
architecture by an experiment of route learning in an indoor
environment.

II. STATE OF THE ART

The problem of estimating the orientation of a robot con-
cerns a very large class of mobile robot navigation algo-
rithms. Excepted some rare cases [4], [5], almost all the al-
gorithms(SLAM, GPS algorithms, snapshot model derivations
[6], appearance-based approaches ...) has to solve this problem.

In the early 80’s, ethologists [6] put forward the role of the
visual landmarks in the navigation of insects and proposed a
model, called the snapshot model. Several following models
suggest animals and even robots could navigate to a place
by performing a parallax minimization between the current
place and the goal place. Most of these models require the
estimation of a local reference. [7] proposes an implementation
of a solar compass and a simplified version of the snapshot
model: the ALV. In 2000, we showed a by-product of a
neural network for view recognition could be used as a visual
compass [8]. [9] reviews some bio-inspired architectures for
mobile robot navigation and also proposes a visual compass
which is unfortunately difficult to use in an online system
because three non aligned panoramas must be available before
computing the direction of the compass. Ethological experi-
ments of blind homing has also proved that a homing vector
can be estimated without visual cues but that the drift of
this vector seems cumulative as the integration of rotational
information provided by wheels encoders of a mobile robot,
accelerometers, gyroscopes or inertial centrals. It seemsthat
the nature has been confronted to the same problems robotics
specialists face today.

In robotics, the problem of dead reckoning has early been
stressed. The major problem is the cumulative drift of the
computed homing vector. Hence, the need to localize precisely
by means of allothetic cues has guided most of the researches
on mobile robot navigation (occupancy grid, SLAM algorithm,
appearance-based approaches): SLAM approaches (as weel as
GPS-based approaches) generaly tries try to jointly estimate
the position and the orientation by means of EKF (Extended
Kalman Filter) approaches for example (the state vector being
[x, y, θ]). In metrical approaches, the estimation of the ori-
entation in SLAM approaches can even be derived from the
estimation of the position (two successive positions provide
an estimation of the orientation) but its accuracy is then
directly linked with the precision of the position estimation.
In visual SLAM approches, the position of the visual cues are
generally considered as some variables of the state vector but
can also be used during a correction phase [10]. Finally, a
priori information can help to solve ambiguous situations but
such simplifications are blamed for not being enought robust
in case of envrionnemental changes. The technics we propose
differs from SLAM algorithms since neither topological nor
metrical maps are computed but they aim at building a sensory-
motor dynamics (which is closer to the learning of a policy

of action).
Actually, the design of an efficient path integration system,

anchored in the visual space in order to guaranty a bound
of the drift, remains a difficult problem. [11] compares two
panoramic images to extract rotational information. The sys-
tem tries to find the shift that minimizes the distance between
the current image and the previous image. Authors insist on
the fact that the system can work without calibration and
that the system is robust to translation of the robot. The
main drawback is that errors are cumulative. Hence, this
system suffers from the same drawback as classical odometers.
Moreover, some panoramic cameras are known to induce
anisotropic deformations. Hence, it seems that the system has
at least to be calibrated to avoid this kind of deformations.
Another recent and interesting system is the one related in
[12], which aims at estimating a 3D orientation of a hand-held
camera. Authors suppose that objects are at an infinite distance
(which is generally true in a large outdoor environment likea
street). They use an EKF to infer the 3D orientation and insist
on the fact that the error remains bounded. Such a property is
crucial if the visual compass is foreseen as a calibrator fora
global path integration system.

Inspired by neuro-ethological data, [13] proposed a hip-
pocampal model of the place cell in which the vision (of
a distant light for example) enables to reset the idiothetic
integrator ([13] also proposes an interesting review of the
biological models of HD-cells until [14]). Unfortunately,the
construction of the local reference is not explained in [13].
In fact, most of the algorithms that provide an estimation
of the robot orientation based on vision, do not address the
problem of the online construction and maintenance of the
local reference. Moreover, the problem of merging idiothetic
integration with allothetic cues has in fact rarely been stressed
([13] is a rare example). Inspired by results in psychology
[15], [16] and mammal neurobiology [17] (especially the
rodent), [18] proposes a generic architecture called the PerAc
architecture. This architecture can learn a sensory motor
dynamics approximating a given behavior and has been used
in many applications: local navigation [19], [20], pro-active
navigation (with planning capability) [21], multiple degree
of freedom actuator control (robotic arm), temporal sequence
learning, gaze direction control... In the context of local
navigation, the PerAc architecture requires a local reference
usually provided by a magnetic compass. [8] proposed to use
a parallel PerAc loop in order to center the gaze on a particular
object by associating visual features with their angular distance
from the center of the object. A visual compass can be
derived from this system by associating landmarks with their
angular distance from a given local reference. Our paper
brings some primarily results on its use in online and real
time sensory-motor tasks like learning to reproduce a route.
We also investigate how this visual compass can be used
as a calibrator for a vestibular/proprioceptive integration in
order to provide a global orientation system anchored in the
visual space (guarantying a bounded drift) and maintained by
the odometrical measurements (when the visual modality is



unavailable or unreliable) [13].

III. PERAC ARCHITECTURE FORV ISUAL NAVIGATION

This section focuses on the PerAc architecture for local
navigation tasks. A model of visual place-cells is used to
provide a robust localization level of the robot in indoor as
well as in outdoor environments [19], [22].
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Fig. 1. Block diagram of the PerAc architecture for local navigation: it is
composed of a visual system that focuses on points of interest and extracts
small images in log-polar coordinates (called local views), a merging layer
that compresseswhat andwhereinformation, a place recognition layer and a
sensory-motor layer that associates places with action, creating a behavioral
dynamics.

Fig. 1 summarizes the chain of processing used on our
robots for the learning of behavioral attractors. A place isde-
fined as a spatial constellation of online learned visual features
(here a set of tripletslandmark-azimuth-elevation) compressed
into a place code. The constellation results from the merging
a what information and awhere information provided by the
visual system that extracts local-view (a log-polar mapping is
used to transform these local views, providing some robustness
to scale and rotation variation) centered on the points of inter-
est. Moreover, neither Cartesian nor topological map building
is required for the localisation. On the contrary, the world
acts as an outside memory [15]. A simple associative learning
between places and actions enables to generate a sensory-
motor dynamics approximating a homing or a route following
behavior. The homing is possible in the area where a minimal
set of landmarks can be recognized (generalisation area).The
problem of choosing an efficient policy of actions has often
been stressed in the literature of reinforcement learning [23]
but we claim that the PerAc architecture is extremely efficient
for spatial behavior learning since it embeds the problem of
the state space partitioning as well has the problem of policies
learning. Fig. 2 a) and b) present experiments of route learning
by human-robot interactions. The real time properties of our
control architecture (not developped here) enable to teachthe
robot in an intuitive manner how to follow a path. The learned
sensory-motor associations shape an attraction basin allowing
our robot to return on the path and to follow it even for
positions in the neighborhood of the learned path.

Although this architecture can achieve really precise
sensory-motor tasks, it requires a local reference provided by a
magnetic compass. The next section proposes a second PerAc
loop in order to create a visual compass.
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Fig. 2. a) Indoor experiment: the robot is guided by a human operator. Three
laps are sufficient to train the robot to perform the task within the road defined
by the black borders. b) Same experiment of visual path learning outside our
lab. Two laps of proscriptive learning (14 place-action associations learned)
are sufficient to teach the robot to perform again and again the same trajectory.

IV. L ANDMARKS-BASED V ISUAL COMPASS

The place recognition architecture previously introduced
provides a robust gradient of localization (an activity level
which decreases monotonically with the distance to the learned
location). We deduce from this result that the features the
visual system extract are really pertinent and characteristic of
the location. To free the system from the magnetic compass,
we proposed to associate the landmarks to their angular
distance with an arbitrary direction which will stand for a local
reference. In [8], the same underlying mechanism was proved
to efficiently center the gaze of the robot on the learned object.
In this paper, we give primarily results showing the usability
of the visual compass in a dynamical context.

The fig. 3 presents the architecture of the visual compass.
The shift between the current orientation and the current
landmark position is associated to the landmark by means
of the neural group called̂θL/C (see architecture on fig.
3)according to the following equation (ωij is initially null):

ωij(t + dt) = ωij(t) + ǫ.Sj(t).S
L
i (t)

In this equation,ωij is the synaptic weight between theith

landmark neuron and thejth neuron of the groupθ̂L/C .
SL

i (t) = 1 if the landmarki is being recruited and0 otherwise.
Sj(t) is the activity of thejth input neuron giving the direction
of the local reference. If the learning rateǫ = 1, the group
associates in one shot the shift between the position of the
landmark and the local reference. The reconstruction of the
local reference does not useθC andθL/C . The predicted shift
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Fig. 3. Block diagram of the visual compass: The current orientation
estimationθC provided by the global orientation system and the position
of the current landmarkθL in the visual field enable to compute the shift
θL−C . This shift is associated to the landmark and can be predicted asθ̂L−C

when the landmark is visible. Shifting this prediction withthe position of the
landmark enable to reconstruct the local reference in the visual field:θ̂C . By
simply summing the successive predictions after a Gaussianconvolution, the
system finally compute a visual estimation of the orientation ¯̂

θC which can
feed a global orientation system.

is simply computed aŝθL/C(j) =
∑NL

i=1
ω

θL/C

ij .Li, whereLi

is the activity of the landmark neuroni and NL the number
of encoded landmarks.

After the learning, the system predicts the position of the
local referencêθC by adding the prediction of the shift̂θL/C

between the local reference and the landmark position to
the current landmark directionθL. Fig. 3 also highlights the
interest of using a convolution with a Gaussian before the
temporal integration of the predicted shift. When two Gaussian
curves parametrized by their mean valueθ1 and θ2 and the
same varianceσ are close (|θ1 − θ2| < 2σ), the sum provided
an average curves and a single maximum of the activity on the
neural field correspond toθ1+θ2

2
: the peaks of the two Gaussian

curves are merged. Otherwise, when two Gaussian curves are
more distant (|θ1 − θ2| > 2σ), their peaks of activity are not
merged and the two maxima remains inθ1 andθ2: in θ1+θ2

2
a

local minimum is present corresponding to a bifurcation in the
decision making. Hence, a wide Gaussian curve enhances the
generalization capability but reduces the precision, whereas
a narrow Gaussian curves provides more accurate predictions
but with less generalization capability (ie: a good precision
near the location of the learning). By sequentially summing
each convolved prediction, a mean orientation is computed and
defined as the visual compass¯̂

θC .
An important difference with the system proposed in [8]

is the possibility to force the system to build a specific
visual reference. Indeed, the shiftθL/C between the landmark
positionθL and the current orientationθC of the robot compels
the visual compass to learnθC as the local reference. This
mechanism will be used in the next section to keep a constant
reference from one learned place to the next. As all the
landmarks in the environment will predict the same direction,
the visual ambiguity on the landmarks does not appears as a
problem for the reconstruction of the reference.

To demonstrate the efficiency of such a visual compass, the
experiment of fig 6 and 5 is proposed: the robot learns a place
and a visual orientation is arbitrarily chosen. We compare

Fig. 4. Learning and prediction of the visual compass: The blacks ring on
the images of the environment are the 32 extracted landmarks. The graphes
under the images represent the building of the visual compass ¯̂

θC during the
analysis of the images. Each curve corresponds to the sum of the prediction
of the analysis of 4, 8, 12, ... 32 landmarks. Between the firstplace where
the visual compass and the landmarks are learned, and the third place, the
robot moves forward and rotates. In spite of the visual changes, the system
provides an accurate estimation of the local reference. However, in the last
place, two max are plausible and it can be dangerous to randomly choose
one of them. The odometry could maintain the correct estimation in such an
ambiguous situation.

the measurement of the magnetic compass with the predicted
direction while the robot rotates on itself. The test is realized
at the learned location and in surrounding locations as shown
in fig. 5 (0 m, 1 m, 1.414 m). Fig 6 shows that the prediction
remains pertinent even in the neighborhood of the learned
location. It seems that such a visual compass could reliably
substitute the magnetic compass.
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Fig. 5. Working room of the experiment of fig 6.

However, the experiment of fig. 6 does not guaranty the
usability of the system in an online and real time application.
The next section proposes a global orientation system that uses
the visual compass as a calibrator and odometry to maintain
the local reference on short distance.
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Fig. 6. Test of the visual compass in the neighborhood of the location where
the local reference was learned. Three curves are displayed: the magnetic
compass, the visual compass as described in the fig. 3, and thevisual compass
with a priming on the estimation of the orientation estimation which amplify
the direction close to the previous direction and inhibits the direction to
far from the previous direction. The curves are displayed according to their
relative position int the environment of fig. 5. The results show that with the
mechanism of priming, the visual compass is able to substitute the magnetic
compass.

V. M ERGING ALLOTHETIC AND IDIOTHETIC INFORMATION

We present here our navigation architecture without a
magnetic compass. In practice, even if the visual modality
is rich enough to reconstruct a local reference, the permanent
movement of the robot, especially without a panoramic sensor
as in the following experiment of fig. 8, implies a temporal
hysteresis: the set of landmark used to compute the visual
reference does not belong to a single place but to the set of
places occupied by the robot during the previous instants. The
effect of this drift can be neglected in a straight line but itcan
be important when the robot rotates. Thanks to the odometry,
the robot is however able to maintain the orientation estimation
quite accurately during a short period. Since this information
is more precise and faster to compute than the visual compass,
our architecture proposes to use the odometry to compute very
quickly the orientation estimation which is re-calibratedby the
visual compass.

In order to achieve the recalibration of the odometry by
the means of the visual compass, several methods can be
used. Our first proposition is to compute a quality measure
of the estimation of the orientation: the orientation must be
non-ambiguous. Obviously, the estimated orientation may have
several maxima in practice. Our criterion is the following:if
the activity of the neural field has local maxima far from
the global maximum according to a given threshold (30o

for example), these local maxima can suggest a problem
(bifurction of an erroneous attractor). If the local maxima
sufficiently distant from the global maximum are higher than
70% of the height of the first maximum (the threshold is
arbitrary), the compass is considered as erroneous. This simple
mechanism enables to refrain the system to self-calibrate on

a potentially wrong value. A second criterion comes from
the observation of a practical problem. When the robot is
rotating while currently going forward, the set of images
used to compute the visual compass firstly does not belong
to a single place but to the set of locations defined by the
recent past position of the robot (not grabbed with the same
robot orientation). Indeed, the angular value used to shiftthe
landmarks azimuths is erroneous when the robot is rotating.
Hence the estimation of the visual compass at the end of
a rectilinear movement is more accurate. A simple solution
is to wait that the robot does a rectilinear movement before
to recalibrate. Such calibration criterions enables the robot to
robustly navigate almost as if it was using a magnetic compass.
Fig 7 gives an overview of the designed parallel architecture
and its asynchronous or pipelined communications.
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Fig. 7. Parallel control architecture for visual navigation without any
magnetic compass. Most of the communications are purely asynchronous.
Four neural networks are used. The block called Head controland image
capture is responsible for making the pan camera rotate and for grabbing
the image. The upper block manages the construction of the place cells, the
visual compass, and the sensory-motor learning. The right block realizes the
action selection and the motor control. Finally, the globalorientation system
gives an orientation estimationθC according to the visual compass and the
odometry. Finally, the global orientation system asynchronously sends back
its estimation to each neural network.

In the experiment of fig 8, the set of place-action associa-
tions was learned online during the guidance of the robot by
the human. No magnetic compass is used. Our bio-inspired
orientation system is calibrated by the allothetic estimation of
the orientation provided by the visual compass and maintained
by the idiothetic integration comming from the odometrical
measurement. In each learned place, a new visual orientation
is associated to each landmark. As the robot stops a while
before it learns the place, the current visual compass should
become stable and can stands for the orientation to be learned.
As compared to the results of route following with a classical
magnetic compass given in fig. 2 a), the precision of the
reproduced trajectory is lower. However, the fact that the robot
manages the task strengthens our trust in our approach.
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Fig. 8. Route following without magnetic compass. Each timethe visual
compass is correct according to the criterion previously defined, it calibrates
the orientation system. Otherwise (for example in the dark or when the robot
is rotating or when the visual compass potentially gives a wrong orientation
estimation), the odometrical measurements enable to maintain the estimation.

VI. D ISCUSSION ANDCONCLUSION

Most of the modern algorithms for autonomous navigation
require the estimation of a reference for the orientation.
We investigated in this paper how allothetic and idiothetic
information can be merged in order to provide an accurate
estimation of the orientation. As the odometry is known to
suffer from cumulative drifts, we propose to calibrate the
orientation system by means of the vision. Vision is only
correlated with the position of the robot in the environmentand
consequently does not suffer from any cumulative drift. If the
vision can sometimes predict a correct estimation, calibrating
the orientation system with this estimation should be enough
to bound the errors. This paper aimed at providing some result
which validates this approach.

If enough learned landmarks are visible from the point of
view of the robot, the visual compass can reconstruct the local
reference in the neighborhood of the learned places, even
without place recognition. However, the estimation can be
erroneous especially when the robot is rotating. The global
orientation system we proposed for our visual navigation
architecture try to bypass the problem: the visual compass
calibrates the orientation system if the robot is doing a
rectilinear movement and if the estimation is non ambiguous.
Otherwise, the odometry enable to maintain the estimated
direction.

Our future work will focus on improving the merging
of the visual compass and the odometry. We also want to
investigate the behavior of our algorithm when the number of
learned landmarks explodes. It will be important to identify
the stable landmarks to favor their recognition and to avoid
the computation of the other by means of a more sophisticated
attentional vision system.
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