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Abstract—For the last decade, we have developed a bio- e« GPS is not always available or can have some problems
inspired control architecture for the autonomous navigaton of in planetary exploration applications, in urban canyon (in

mobile robots. The robot is able to learn to reproduce a homig or the environment of the fig 2 b for instance), in indoor
a route following behavior by interacting with a human teacher. environments ’

However, the system strongly relies on the estimation of the

orientation provided by a magnetic compass. We propose in ih . . . . .
paper a model of visual compass in order to avoid the use of From the biological point of view, neuro-ethological stud-

a magnetic compass. Each online learned visual landmark is i€s have highlighted that the capability of path integmatio
associated with the shift between its position in the visuafield in animals relies on two different sources of information,
;}”d agir;ection of refg_rence._ Thel prOjeﬁt}mrdanﬁj th‘i i”ge_%ﬁo“_ Ofl namely allothetic information gathering the informatiaorh
n a one dimensional neural fi W i . L -

coenigasz?/v%ic%%ciuratglysrgcins?rﬁ;s t(?]e iic):al rgfelrjenaiastl;]?e the _ex_temal World (YISIO.n’ audition, touch, Smell) "?‘”do*d'
neighborhood of the locations of leamning. We also investare thetiC information which is endogenous (proprioceptionia
how this visual compass can be used to calibrate an orientath ~ actuator and vestibular information) [1]. These two soarae
system, which could be maintained by the odometry. Finallythe supposed to be merged in a global path integration system.
global system is validated in an experiment of route learnig. In parallel, neurobiology has also shown the existence of
head direction cells (HD-cells) in different areas of thaibr
[2]. Some of these cells seem to provide a purely allothetic

Since the first algorithms for autonomous mobile robagstimation of the head direction whereas others rely on id-
navigation, the problem of the orientation estimation hasthetic information. The discovery of the grid-cells ineth
always been a central question. The methods to estimate émorhinal cortex of the rat [3] confirms the hypothesis that
orientation are various. Some methods can provide a dirébe path integration system could be calibrated by allathet
estimation of the orientation such as a magnetic compasscoes (a constellation of landmarks for example) and could
the tracking of a very distant and non ambiguous landmalle maintained by the integration of idiothetic information
(polar star method) whereas others require the integratibrdeed, the regular spacing of the grid even in the dark
of rotational stimuli: odometry on the wheel encoders atrongly suggests an integration of information comingrfro
accelerometers or inertial centrals or optical flow measureestibular or proprioceptive stimuli. Moreover, the gridlls
Modern GPS and DGPS are also able to provide a goostate linearly with the rotation of the visual cues which
estimation of the direction of the movement by integrating t indicates that the path integration system is visually aneth.

position of the mobile. Each method has unfortunately someThis paper presents first a brief review of previous works
drawbacks: which addressed the problems of the autonomous navigation
« The magnetic compass is not usable in planetary exnd/or the orientation estimation. Next, we propose a bio-
ploration applications (on Mars for example where nspired architecture for visual navigation and we provide
magnetic field exists) or near electrical equipments or @ome results of route learning through human-robot interac
a ferrous ground that can deviate the magnetic field tibns in indoor and outdoor environments with a magnetic
the earth. compass used for the estimation of the orientation. In order
« A distant and non ambiguous landmark is not alway® avoid the problems of the magnetic compass, we propose a
visible: tracking the sun during the whole day, or findmodel of a visual compass able to reconstruct an orientation
ing a pertinent landmark in indoor environments seeniyy means of a set of visual landmarks. The accuracy of the
difficult. allothetic estimation will be highlighted by comparing the
« The orientation estimation computed by the integraticalothetic estimation with the value of the magnetic congpas
of noisy rotational measurements always suffers from \&e finally address the problem of the merging of the allotheti
cumulative drift (need of recalibration). and idiothetic information in a global orientation systefine
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vision enables to calibrate the orientation system which @ action).
maintained by the odometry. We finally validate our global Actually, the design of an efficient path integration system
architecture by an experiment of route learning in an indoanchored in the visual space in order to guaranty a bound
environment. of the drift, remains a difficult problem. [11] compares two
panoramic images to extract rotational information. Ths-sy
tem tries to find the shift that minimizes the distance betwee

The problem of estimating the orientation of a robot corthe current image and the previous image. Authors insist on
cerns a very large class of mobile robot navigation algohe fact that the system can work without calibration and
rithms. Excepted some rare cases [4], [5], almost all the ahat the system is robust to translation of the robot. The
gorithms(SLAM, GPS algorithms, snapshot model derivatiormain drawback is that errors are cumulative. Hence, this
[6], appearance-based approaches ...) has to solve tiikepro system suffers from the same drawback as classical odosneter

In the early 80’s, ethologists [6] put forward the role of théMoreover, some panoramic cameras are known to induce
visual landmarks in the navigation of insects and proposedaaisotropic deformations. Hence, it seems that the systsn h
model, called the snapshot model. Several following modeds least to be calibrated to avoid this kind of deformations.
suggest animals and even robots could navigate to a pla®other recent and interesting system is the one related in
by performing a parallax minimization between the curreff2], which aims at estimating a 3D orientation of a handdhel
place and the goal place. Most of these models require tbe@mera. Authors suppose that objects are at an infinitendista
estimation of a local reference. [7] proposes an implentemta (which is generally true in a large outdoor environment like
of a solar compass and a simplified version of the snapshstteet). They use an EKF to infer the 3D orientation and insis
model: the ALV. In 2000, we showed a by-product of @n the fact that the error remains bounded. Such a property is
neural network for view recognition could be used as a visuatucial if the visual compass is foreseen as a calibratomafor
compass [8]. [9] reviews some bio-inspired architectuias fglobal path integration system.
mobile robot navigation and also proposes a visual compassnspired by neuro-ethological data, [13] proposed a hip-
which is unfortunately difficult to use in an online systenpocampal model of the place cell in which the vision (of
because three non aligned panoramas must be availablebefodistant light for example) enables to reset the idiothetic
computing the direction of the compass. Ethological expeintegrator ([13] also proposes an interesting review of the
ments of blind homing has also proved that a homing vectbiological models of HD-cells until [14]). Unfortunatelthe
can be estimated without visual cues but that the drift @bnstruction of the local reference is not explained in [13]
this vector seems cumulative as the integration of rotafionin fact, most of the algorithms that provide an estimation
information provided by wheels encoders of a mobile robodf the robot orientation based on vision, do not address the
accelerometers, gyroscopes or inertial centrals. It setais problem of the online construction and maintenance of the
the nature has been confronted to the same problems robokixsl reference. Moreover, the problem of merging idioihet
specialists face today. integration with allothetic cues has in fact rarely beeested

In robotics, the problem of dead reckoning has early be¢fi3] is a rare example). Inspired by results in psychology
stressed. The major problem is the cumulative drift of thd5], [16] and mammal neurobiology [17] (especially the
computed homing vector. Hence, the need to localize prgciseodent), [18] proposes a generic architecture called thAde
by means of allothetic cues has guided most of the researcheshitecture. This architecture can learn a sensory motor
on mobile robot navigation (occupancy grid, SLAM algorithmdynamics approximating a given behavior and has been used
appearance-based approaches): SLAM approaches (as we@h asany applications: local navigation [19], [20], pro-aet
GPS-based approaches) generaly tries try to jointly eséimaavigation (with planning capability) [21], multiple dem
the position and the orientation by means of EKF (Extended freedom actuator control (robotic arm), temporal seaqaen
Kalman Filter) approaches for example (the state vectardoeilearning, gaze direction control... In the context of local
[z,y,0]). In metrical approaches, the estimation of the oriavigation, the PerAc architecture requires a local refeee
entation in SLAM approaches can even be derived from thisually provided by a magnetic compass. [8] proposed to use
estimation of the position (two successive positions mtevi a parallel PerAc loop in order to center the gaze on a pasticul
an estimation of the orientation) but its accuracy is thewbject by associating visual features with their angulatatice
directly linked with the precision of the position estinmati from the center of the object. A visual compass can be
In visual SLAM approches, the position of the visual cues aderived from this system by associating landmarks withrthei
generally considered as some variables of the state veator &ngular distance from a given local reference. Our paper
can also be used during a correction phase [10]. Finally,baings some primarily results on its use in online and real
priori information can help to solve ambiguous situation$ btime sensory-motor tasks like learning to reproduce a route
such simplifications are blamed for not being enought robudte also investigate how this visual compass can be used
in case of envrionnemental changes. The technics we propasea calibrator for a vestibular/proprioceptive integratin
differs from SLAM algorithms since neither topological nomrder to provide a global orientation system anchored in the
metrical maps are computed but they aim at building a sensowsual space (guarantying a bounded drift) and maintained b
motor dynamics (which is closer to the learning of a policthe odometrical measurements (when the visual modality is
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unavailable or unreliable) [13].

IIl. PERAC ARCHITECTURE FORVISUAL NAVIGATION

This section focuses on the PerAc architecture for local
navigation tasks. A model of visual place-cells is used to
provide a robust localization level of the robot in indoor as
well as in outdoor environments [19], [22].
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Fig. 1. Block diagram of the PerAc architecture for local igation: it is
composed of a visual system that focuses on points of interes$ extracts

—> Place—-action association learned at lap 1
A _ . . ) » Place-action association learned at lap 2
small images in log-polar coordinates (called local views)merging layer b)  — Reproduced rajectory

that compressewhat andwhereinformation, a place recognition layer and a
sensory-motor layer that associates places with acti@gtiog a behavioral
dynamics.

Fig. 2. a) Indoor experiment: the robot is guided by a humaeratpr. Three
laps are sufficient to train the robot to perform the task inithe road defined
by the black borders. b) Same experiment of visual path iegrautside our

Fig. 1 summarizes the chain of processing used on dab- Tw_o _Iaps of proscriptive learning (14 pla(_:e-actionoa_iimions Ie_arned)
. . . are sufficient to teach the robot to perform again and aga&s#ime trajectory.
robots for the learning of behavioral attractors. A placees
fined as a spatial constellation of online learned visudlies
(here a set of tripletandmark-azimuth-elevatigiwompressed
into a place code. The constellation results from the mergin
a what information and avhereinformation provided by the ~ The place recognition architecture previously introduced
visual system that extracts local-view (a log-polar magps Provides a robust gradient of localization (an activity dev
used to transform these local views, providing some rolasstn which decreases monotonically with the distance to thenksr
to scale and rotation variation) centered on the points tefin location). We deduce from this result that the features the
est. Moreover, neither Cartesian nor topological map lngid visual system extract are really pertinent and characieiis$
is required for the localisation. On the contrary, the worléhe location. To free the system from the magnetic compass,
acts as an outside memory [15]. A simple associative legrniwe proposed to associate the landmarks to their angular
between places and actions enables to generate a sensdigfance with an arbitrary direction which will stand foraél
motor dynamics approximating a homing or a route followingeference. In [8], the same underlying mechanism was proved
behavior. The homing is possible in the area where a mininial efficiently center the gaze of the robot on the learnedatbje
set of landmarks can be recognized (generalisation afes).Tn this paper, we give primarily results showing the us#pili
problem of choosing an efficient policy of actions has oftedf the visual compass in a dynamical context.
been stressed in the literature of reinforcement learni#®) [ The fig. 3 presents the architecture of the visual compass.
but we claim that the PerAc architecture is extremely effitie The shift between the current orientation and the current
for spatial behavior learning since it embeds the problem Bindmark position is associated to the landmark by means
the state space partitioning as well has the problem of jeslicof the neural group called; - (see architecture on fig.
learning. Fig. 2 a) and b) present experiments of route Iegrn 3)according to the following equation; is initially null):
by human-robot interactions. The real time properties af ou L
control architecture (not developped here) enable to téaeh wiglt + dt) = wis(t) + €.9;(t)-57(t)
robot in an intuitive manner how to follow a path. The learneth this equationw;; is the synaptic weight between thig
sensory-motor associations shape an attraction basiwiatio landmark neuron and thg** neuron of the group‘jL/C.
our robot to return on the path and to follow it even foiSZ(¢) = 1 if the landmarki is being recruited and otherwise.
positions in the neighborhood of the learned path. S, (t) is the activity of thej!” input neuron giving the direction
Although this architecture can achieve really precisef the local reference. If the learning rate= 1, the group
sensory-motor tasks, it requires a local reference pralimea associates in one shot the shift between the position of the
magnetic compass. The next section proposes a second Pdaddmark and the local reference. The reconstruction of the
loop in order to create a visual compass. local reference does not uge andd;, ;. The predicted shift
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Fig. 3. Block diagram of the visual compass: The current raagon
estimationdc provided by the global orientation system and the position
of the current landmarldy, in the visual field enable to compute Athe shift
61, . This shift is associated to the landmark and can be predasé;, -
when the landmark is visible. Shifting this prediction witie position of the
landmark enable to reconstruct the local reference in theatifield:0-. By
simply summing the successive predictions after a Gaussiawolution, the
system finally compute a visual estimation of the orientafie: which can
feed a global orientation system.

Fig. 4. Learning and prediction of the visual compass: Treeks ring on
the images of the environment are the 32 extracted landmaiks graphes
is simply computed aéL/C(j) — Zﬁ\iLl ijL/O.Li, whereL; under _the imag(_es represent the building of the visual com@@sduring t_he
. . : analysis of the images. Each curve corresponds to the suimegbrediction
is the activity of the landmark neuranand N, the number of the analysis of 4, 8, 12, ... 32 landmarks. Between the filate where
of encoded landmarks. the visual compass and the landmarks are learned, and thieplaice, the

After the learning, the system predicts the position of thr@bot moves forward and rotates. In spite of the visual ckanghe system
’ provides an accurate estimation of the local reference. étew in the last

local referencedc: by adding the prediction of the shift, ;o piace, two max are plausible and it can be dangerous to ragdcoose
between the local reference and the landmark position dge of them. The odometry could maintain the correct estimah such an

the current landmark directiofl. Fig. 3 also highlights the ambiguous situation.
interest of using a convolution with a Gaussian before the
temporal integration of the predicted shift. When two Garss

curves parametrized by their mean valieand 0> and the he measurement of the magnetic compass with the predicted
same variance are close [(, — 0| < 20), the sum provided jrection while the robot rotates on itself. The test is iz
an average curves and a single maximum of the activity on thee |earned location and in surrounding locations as show
neural field correspond t@;—%: the peaks of the two Gaussian, fig. 5 (0 m, 1 m, 1.414 m). Fig 6 shows that the prediction
curves are merged. Otherwise, when two Gaussian CUrVes @i ains pertinent even in the neighborhood of the learned
more distant [, — 62| > 20), their peaks of activity are not |,cation. It seems that such a visual compass could reliably
merged and the two maxima remainsfinandfs: in 95% a o\ e the magnetic compass.
local minimum is present corresponding to a bifurcatiorhie t
decision making. Hence, a wide Gaussian curve enhances the
generalization capability but reduces the precision, wasr @ Place and orientation [fobpt [ Table | [ BencH
a narrow Gaussian curves provides more accurate predsction leamed [ Table] r»
but with less generalization capability (ie: a good prewisi + Place tested £y Robpt
near the location of the learning). By sequentially summing
each convolved prediction, a mean orientation is computed a
defined as the visual compas. .
An important difference with the system proposed in [8] e |
is the possibility to force the system to build a specific b =
visual reference. Indeed, the shiff .~ between the landmark m\ Table |[ Bench| | Table\éﬂ
positiond;, and the current orientatiofy> of the robot compels
the visual compass to leami,y as the local reference. This
mechanism will be used in the next section to keep a constant
reference from one learned place to the next. As all the
landmarks in the environment will predict the same diractio
the visual ambiguity on the landmarks does not appears as #owever, the experiment of fig. 6 does not guaranty the
problem for the reconstruction of the reference. usability of the system in an online and real time appligatio
To demonstrate the efficiency of such a visual compass, thke next section proposes a global orientation system test u
experiment of fig 6 and 5 is proposed: the robot learns a plaitee visual compass as a calibrator and odometry to maintain
and a visual orientation is arbitrarily chosen. We compatbe local reference on short distance.

- Window

Tablg
8.4m

99m

Fig. 5.  Working room of the experiment of fig 6.



a potentially wrong value. A second criterion comes from
the observation of a practical problem. When the robot is
rotating while currently going forward, the set of images
used to compute the visual compass firstly does not belong
to a single place but to the set of locations defined by the
— recent past position of the robot (not grabbed with the same
Ve / ) robot orientation). Indeed, the angular value used to shét
r landmarks azimuths is erroneous when the robot is rotating.
7 Hence the estimation of the visual compass at the end of
i a rectilinear movement is more accurate. A simple solution
is to wait that the robot does a rectilinear movement before
/ - A - to recalibrate. Such calibration criterions enables tH#tdo
o / | robustly navigate almost as if it was using a magnetic cosipas
/ oz Fig 7 gives an overview of the designed parallel architectur
and its asynchronous or pipelined communications.

Computed value: [0,360]°

nt

Fig. 6. Test of the visual compass in the neighborhood ofdhbetion where
the local reference was learned. Three curves are displapedmagnetic ‘Place cell, sensory-motor learning, visual comp%ss
compass, the visual compass as described in the fig. 3, amiktie compass

with a priming on the estimation of the orientation estimativhich amplify
the direction close to the previous direction and inhibite direction to
far from the previous direction. The curves are displayedoating to their
relative position int the environment of fig. 5. The resul®w that with the
mechanism of priming, the visual compass is able to substitte magnetic
compass.

Action selection
and
motor control

Head control
and image captu

V. MERGING ALLOTHETIC AND IDIOTHETIC INFORMATION

We present here our navigation architecture without ia
magnetic compass. In practice, even if the visual modality ..
is rich enough to reconstruct a local reference, the permane
movement of the robot, especially without a panoramic senso
as in the following experiment of fig. 8, implies a temporal === Asynehronoous communnication with acknowledgement
hysteresis: the set of landmark used to compute the visual > Purely asynchronous communication
reference does not belong to a single place but to the set of
places occupied by the robot during the previous instartte. T _ ) ) o

ffect of this drift can be nealected in a straight line butah Fig. 7._ Parallel control architecture fot V|_sual navigatiovithout any
€ e.C g g9 magnetic compass. Most of the communications are purelypcasgnous.
be important when the robot rotates. Thanks to the odometrgur neural networks are used. The block called Head cominol image
the robot is however able to maintain the orientation ediipna Ccapture is responsible for making the pan camera rotate angjrabbing

it telv duri hort iod. Si this infoiomat the image. The upper block manages the construction of teepgells, the
_qu' e accura_e y during a short period. since I_S Intoronat g ) compass, and the sensory-motor learning. The rigluklrealizes the
is more precise and faster to compute than the visual compagson selection and the motor control. Finally, the globaéntation system
our architecture proposes to use the Odometry to Compute Vgir/es an orientation estimatiofy> according to the visual compass and the

icklv th . . . . hich i lib h odometry. Finally, the global orientation system asynobrgsly sends back
quickly the orientation estimation which is re-calibratgdthe g estimation to each neural network.
visual compass.

In order to achieve the recalibration of the odometry by In the experiment of fig 8, the set of place-action associa-
the means of the visual compass, several methods cantibes was learned online during the guidance of the robot by
used. Our first proposition is to compute a quality measutike human. No magnetic compass is used. Our bio-inspired
of the estimation of the orientation: the orientation must horientation system is calibrated by the allothetic estiomabf
non-ambiguous. Obviously, the estimated orientation naayeh the orientation provided by the visual compass and maiathin
several maxima in practice. Our criterion is the followinfy: by the idiothetic integration comming from the odometrical
the activity of the neural field has local maxima far fronmeasurement. In each learned place, a new visual orientatio
the global maximum according to a given threshold °(30s associated to each landmark. As the robot stops a while
for example), these local maxima can suggest a probldrefore it learns the place, the current visual compass ghoul
(bifurction of an erroneous attractor). If the local maxim&éecome stable and can stands for the orientation to be kkarne
sufficiently distant from the global maximum are higher thaAs compared to the results of route following with a claskica
70% of the height of the first maximum (the threshold imagnetic compass given in fig. 2 a), the precision of the
arbitrary), the compass is considered as erroneous. Thi@esi reproduced trajectory is lower. However, the fact that thigot
mechanism enables to refrain the system to self-calibrate manages the task strengthens our trust in our approach.

Obsf(ac'[és Aé{ion
proximity :

‘‘‘‘‘‘‘‘‘ » Causual link: effect of an action on the sensations
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--- Desired trajectory
— Reproduced trajectory
— Place-action association learned

Fig. 8. Route following without magnetic compass. Each titine visual
compass is correct according to the criterion previouslfingd, it calibrates
the orientation system. Otherwise (for example in the darlioen the robot
is rotating or when the visual compass potentially gives angrorientation
estimation), the odometrical measurements enable to aiaitite estimation.

(8]

VI. DIscussiON ANDCONCLUSION

(9]

Most of the modern algorithms for autonomous navigation
require the estimation of a reference for the orientatiofg
We investigated in this paper how allothetic and idiothetic
information can be merged in order to provide an accur
estimation of the orientation. As the odometry is known t
suffer from cumulative drifts, we propose to calibrate thg2]
orientation system by means of the vision. Vision is only
correlated with the position of the robot in the environmemd 13,
consequently does not suffer from any cumulative drifthi t
vision can sometimes predict a correct estimation, caiinga 14!
the orientation system with this estimation should be ehougs)
to bound the errors. This paper aimed at providing some tresul
which validates this approach.

If enough learned landmarks are visible from the point cg%6]
view of the robot, the visual compass can reconstruct thal lo¢17]
reference in the neighborhood of the learned places, ev%'ﬁ
without place recognition. However, the estimation can be
erroneous especially when the robot is rotating. The global
orientation system we proposed for our visual navigatidﬁg]
architecture try to bypass the problem: the visual compass
calibrates the orientation system if the robot is doing [&0]
rectilinear movement and if the estimation is non ambiguous
Otherwise, the odometry enable to maintain the estimated
direction. [21]

Our future work will focus on improving the merging
of the visual compass and the odometry. We also want to
investigate the behavior of our algorithm when the number 2]
learned landmarks explodes. It will be important to identif
the stable landmarks to favor their recognition and to avoid
the computation of the other by means of a more sophisticatéél
attentional vision system.

il

de France.

Movies of the experiments of fig. 2 and 8 available on:
http://www.etis.ensea.fr/ neurocyber/giovannangeline.htm
http://www.etis.ensea.fr/neurocyber/Videos/homimdéx.html
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