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Abstract—In this paper, we discuss the rate splitting issue
for the design of finite length Raptor codes, in a joint decoding
framework. We show that the choice of a rate lower than usually
proposed for the precode enables to design Raptor codes that
perform well at small lengths, with almost no asymptotic loss.
We show in particular that the error floor can be greatly reduced
by properly choosing the rate splitting between the precode and
the LT code. Those behaviors are demonstrated both on the BEC
and the BIAWGN channel.

I. INTRODUCTION

The1 main property of Fountain codes, originally intro-
duced [1] for communicating over an erasure channel with
unknown erasure probability, is that they are naturally rateless.
A fountain code produces a potentially limitless number of
independent output symbols. Whereas traditional block codes
are characterized by their design rate and require puncturing
to achieve higher rates, a fountain code achieves this naturally
by adapting the number of output symbols. LT codes, the
first class of efficient fountain codes introduced by Luby [2],
are fully characterized by an output degree distribution, and
good performance is achieved by optimizing this distribution.
Unfortunately, arbitrarily low decoding error probability can
only be obtained at complexity that is too high to ensure linear
encoding and decoding time. To circumvent this problem, Rap-
tor codes were introduced by Shokrollahi [3] as an extension
of LT codes. A Raptor code is built from the concatenation of
an LT code and an outer code, called precode, which is a high
rate error correcting block code. In Raptor codes, the LT code
does not necessarily reach full symbol recovery, but needs
only to recover a large enough proportion of input symbols,
the precode being in charge of recovering the remaining erased
symbols. The concatenated structure of Raptor codes enables
the design of output degree distributions for the LT code
with constant average degree i.e. with the property of linear
encoding and decoding time.

There are two main issues for the design of a Raptor code:
the design of an output degree distribution, and the choice
of the precode. Much attention has been paid to the design of
output degree distributions, for various types of channels, both
when the two component codes of the Raptor code are decoded
sequentially [3], [4], or jointly [5]. Very little attention has
been paid on the precode design problem. Although it has been
suggested for practical constructions [3] to use a concatenation
of Hamming codes and LDPC code as precode, we consider
the general definition where any high rate error correcting
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code can be considered as a precode, and focus on LDPC
precoded Raptor codes. We do not consider concatenation with
Hamming codes for the precode, because these constructions
are specifically designed for the BEC case, and our results
prove that with our approach, the use of Hamming codes is
not necessary. Moreover, we restricted ourselves to regular
LDPC precodes because for relatively high rates, regular codes
are known to have good thresholds, close to the irregular
thresholds. We present in this paper an analysis of a rate
splitting approach between an LDPC precode and the fountain,
when the two code components are decoded jointly.

A. The rate-splitting issue
In the literature, the rate of the precode is usually chosen

very close to 1. Indeed, the optimization of output degree
distributions allows designing LT codes such that the fraction
of unrecovered input symbols is extremely low. Choosing a
very high rate precode is a valid strategy when the Raptor code
is decoded sequentially, but could be a suboptimal choice when
we consider iterative joint decoding of the precode and the LT
code [5]. In this latter case, if the output degree distribution
is matched – with proper optimization – to the EXIT chart of
a lower rate precode, there is almost no asymptotic loss i.e
no loss in the waterfall region. By lower rate, we mean rates
that are between R = 0.9 and R = 0.95, whereas typically
in the existing literature, very high rate codes, e.g. R = 0.98,
are considered.

Then arises the natural question of the optimal repartition
of the overall rate between the LT code and the precode.
The use of a lower rate precode can be very attractive in
practice, especially for the design of Raptor codes with short
or moderate information block lengths. For short to moderate
lengths, the topology of the overall Tanner graph in terms of
short cycles and subsequent stopping/trapping sets needs to
be considered. The problem of using a very high rate LDPC
precode is then that is introduces a large number of length-4
cycles, resulting in error floors which are unacceptably high.
More precisely, the code length such that an LDPC code of
girth 6 exists grows exponentially with the check node degree
dv [6], hence with the code rate. Using a lower rate precode
has the main objective of improving the Raptor code in the
error floor region for finite block lengths.

We now explain why the use of a lower rate precode does
not affect the overall rate of the Raptor code. Let R be the
rate of the Raptor code which is the concatenation of an LT
code of rate RLT , and a precode of rate Rp. For a channel
with capacity C, the optimization for the sequential decoding
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Fig. 1. Description of a Raptor code: Tanner graph of an LT code + precode.
The black squares represent the parity check nodes and the circles represent
variable nodes associated with input symbols or output symbols.

scheme always gives RLT < C. Since Rp < 1, the total rate of
the precode R = RpRLT is smaller than RLT , and therefore
the rate of the precode Rp appears to be a burden in terms
of the total rate of the Raptor code. However, in the case
of the optimization for joint decoding the optimized output
degree distributions can have a rate RLT > C, which allows
considering precodes with lower rates and still have a total
asymptotic rate R close to the capacity.

Therefore, jointly decoded Raptor codes allow to study the
problem of the overall rate distribution and its repartition
between the LT code and the precode, which is the problem
that we address in this paper.

B. Outline of the paper
In section II, we briefly present the construction of Raptor

codes to introduce the notations. Then, in sections III and IV,
we address the rate splitting issue for two different channels,
namely the BEC and the BIAWGNC, and we show that for
the design of finite length Raptor codes, it is crucial to use
lower rate precodes. For a wide rage of a priori fixed precode
rates Rp ∈ [0.9; 0.9625], we design output degree distributions
for the LT code using density evolution (DE) and taking
into account the information brought by the precode, that
is assuming jointly decoded Raptor codes. The case of the
BEC is solved with exact density evolution in section III,
and the case of the BIAWGNC is solved using a Gaussian
approximation (EXIT type) of DE in section IV. In both
cases, the asymptotic distributions will be tested for small
(K = 1024) to moderate (K = 8192) block lengths, and
simulation results show an impressive gain in the error floor
regions for decreasing precode rate.

II. LT CODES AND RAPTOR CODES

We call input symbols the set of information symbols to
be transmitted and output symbols the symbols produced by
an LT code from the input symbols. The input symbols are
not transmitted over the channel. At the receiver side, belief
propagation (BP) decoding is used to recover iteratively the
input symbols. An LT code is described by its output degree
distribution [2]: to generate an output symbol, a degree d is
sampled from that distribution, independently from the past
samples, and the output symbol is then formed as the sum
of a uniformly randomly chosen subset of size d of the input
symbols. We will refer to the check nodes connected to the
output symbols of the LT code as dynamic check nodes.

Let Ω1,Ω2, . . . ,Ωdc
be the distribution weights on

1, 2, . . . , dc so that Ωd denotes the probability of choosing
the value d. We denote the output degree distribution using its
generator polynomial: Ω(x) =

∑dc

i=1 Ωix
i, which is associated

with the corresponding edge degree distribution in the Tanner
graph ω(x) =

∑dc

i=1 ωix
i−1 = Ω′(x)/Ω′(1) [3].

Because the input symbols are chosen uniformly at ran-
dom, their node degree distribution is binomial, and can be
approximated by a Poisson distribution with parameter α [4].
Thus, the input symbol node degree distribution is defined
as: I(x) = eα(x−1) Then, the associated input symbol edge
degree distribution ι(x) = I ′(x)/I ′(1) also equals eα(x−1).
Both distributions are of mean α.

A Raptor code is an LT code concatenated with an outer
code called “precode”, which is a high rate error correcting
block code. The input symbols of the LT code are then formed
by a codeword of the precode. The Tanner graph of a Raptor
code is presented on Fig. 1.

III. JOINTLY DECODED RAPTOR CODES FOR THE BEC
In this section, we derive the asymptotic analysis of the

joint decoding of Raptor codes over the BEC. For our study,
we use Density Evolution (DE) under the treelike assumption,
and use the same system model as in [5]. Density evolution is
the main tool for the analysis of graphical codes such as LDPC
codes and Raptor codes. DE can be expressed analytically in
the case of an erasure channel, and we refer the reader to [7]
for a detailed presentation of this technique.

The analysis is presented from the fountain point of view,
and we track the evolution the messages that are related to
the fountain part of the Tanner graph. Indeed, our objective is
to optimize the distribution of the fountain part of the Raptor
code, namely ω(x), taking into account the contribution of the
precode through its transfer function.

A. Asymptotic analysis of jointly decoded Raptor codes
1) Density evolution: Because the channel is symmetric,

we can assume without loss of generality that the all-zero
codeword has been transmitted. In that case, the messages on
the edges of the decoding graph are 1 and 0, where the value 0
indicates an erasure: the value is 0 iff the corresponding edge
is connected to an input symbol which has not been recovered.
When the precode is an LDPC code with data node and check
edge distributions λ̃(x) and ρ(x), its extrinsic transfer function
[8] is given by:

T (x) = 1− λ̃
(
1− ρ(x)

)
(1)

As done in [5], we assume the reinitialization of the decoder,
which is a pessimistic assumption because we under-estimate
the information provided by the precode. We assume that the
initial messages from check nodes to variable nodes are set to
0, which means that the values of the messages on the LDPC
graph are not kept from one global iteration to the next one.
Note that this pessimistic assumption is crucial to have a linear
optimization problem, and nevertheless leads to the design of
efficient output degree distributions.



We denote p(l) (resp. q(l) ) the probability that an edge
connecting a dynamic check node to an input symbol (resp.
an input symbol to a dynamic check node) carries the value
1 at the lth decoding iteration. We denote by u(l) the extrinsic
information passed by the LT code to the precode, at the lth

decoding iteration. As the input symbols are of average degree
α, we have:

v(l) = T (u(l)) = T
(
1− e−αq(l−1))

(2)

The extrinsic information passed by the precode to the LT
code is then v(l) = T (u(l)). When accounting for the transfer
function of the precode, the update rules for the messages in
the Tanner graph can be written as follows:

p(l) = 1− (1− v(l))e−αq(l−1)

(3)
1− q(l) = ω(p(l)) (4)

q(l) = F (q(l−1))

= ω

(
1− e−αq(l−1)

(
1− T

(
1− e−αq(l−1))))

(5)

Combining (3), (4) and (2) gives (5), that describes the evo-
lution through one joint decoding iteration of the probability
of erasure at the output of the dynamic check nodes. Note
that this expression is linear with respect to the coefficients of
ω(x), which is the distribution that we intend to optimize. We
point out that (5) is general since it reduces to the classical
sequential decoding case by setting the extrinsic transfer
function to x �→ T (x) = 0 ∀x ∈ [0; 1], thus assuming that
no information is propagated from the precode to the fountain.

Following the same approach developed in [5] for the
BIAWGNC case, we derive the following lower bounds on
ω1 and ω2:
Proposition 1: The decoding process can begin iff q(1) > ε,

for some arbitrary ε > 0, which gives:

ω1 > ε (6)
Therefore, one must have ω1 > 0 for the decoding process
to begin, and ε appears to be a design parameter that will
constrain the optimization problem,
Proposition 2: For an output degree distribution that is to

be capacity achieving, we have:

ω2 >
1

α
(7)

2) Optimization of output degree distributions: The opti-
mization of an output distribution consists in maximizing the
rate of the corresponding LT code, i.e. maximizing Ω′(1) =∑

i Ωii, which is equivalent to minimizing
∑

i ωi/i. Moreover,
according to the previous section, several constraints must be
satisfied. Since ω(x) is a probability distribution, its coeffi-
cients must sum up to 1. We call this the proportion constraint
[C1]. Moreover, to ensure the convergence of the iterative
process we must have F (x) > x. However, this inequality
cannot hold for each and every value of x: using the same
derivation technique as in [5], it can be shown that the fixed

point of F (.) is smaller than 1. Therefore, we must fix a
margin δ > 0 away from 1, and then by discretizing [0; 1− δ]
and requiring inequality to hold on the discretization points,
we obtain a set of inequalities that need to be satisfied: they
define the convergence constraint [C2]. The starting condition
(proposition 1) must also be satisfied and defines the constraint
[C3]. Moreover, the edge proportion of output symbols of
degree 2 is lower bounded by proposition 2, defining the
constraint [C4]. Finally, x �→ T (x) is defined according to
(1) for an LDPC code, or could be estimated with Monte
Carlo simulations if another component code is used as a
precode. The transfer function T (·) appears in the general
density evolution and therefore in constraint [C2]. For a given
value of α, and a given channel parameter σ2, the cost function
and the constraints are linear with respect to the unknown
coefficients ωi. Therefore, the optimization of an output degree
distribution can be written as a linear optimization problem
that can be efficiently solved with linear programming.

For a given α, the optimization problem can be stated as
follows:

ωopt(x) = arg min
ω(x)

∑
j

ωj

j
(8)

subject to the constraints:
[C1]

∑
i ωi = 1

[C2] F (x) > x ∀x ∈ [0; 1− δ] for some δ > 0
[C3] ω1 > ε for some ε > 0
[C4] ω2 > 1

α

If we denote xp the threshold in terms of mutual information
of the LDPC precode, then the convergence of the LT code
should be such that at some point of the decoding process, u(l)

becomes larger than the precodes threshold xp, i.e. δ must be
chosen such that 1− δ > xp.

By applying this optimization procedure for increasing
values of α, it appears that there is a value αopt that maximizes
the rate RLT . The value αopt gives the optimal distribution that
maximizes the overall rate.

B. Simulation results
We optimized output degree distributions for 4 different

precodes with different rates. We restricted ourselves to reg-
ular LDPC precodes because for high rates, regular codes
are known to have good thresholds, close to the irregular
thresholds.

Figures 2, 3, 4 and 5 show simulation results for Raptor
codes of length K=1024, 2048, 4096 and 8192 respectively.
Each figure compares Raptor codes with the following regular
LDPC precodes:
• (dv, dc) = (3, 30) regular LDPC code of rate R=0.9
• (dv, dc) = (3, 40) regular LDPC code of rate R=0.925
• (dv, dc) = (3, 60) regular LDPC code of rate R=0.95
• (dv, dc) = (3, 80) regular LDPC code of rate R=0.9625

The different LDPC precodes were constructed with a PEG-
based algorithm that minimizes the multiplicity of the girth.

For K = 1024 input bits (Figure 2), which can be consid-
ered as a very small code, only the lowest considered rate



R = 0.9 shows good performance. For all other precode
rates, the code exhibits an error floor behavior, which can be
explained by the following remarks.

If we denote by X-cycle a cycle of length X, the (dv, dc)
LDPC precodes of size K = 1024 had the following proper-
ties:
• (3,80) code: 5356 4-cycles, and 716492 6-cycles.
• (3,60) code: 2328 4-cycles and 295760 6-cycles,
• (3,40) code: 90 4-cycles and 83869 6-cycles
• (3,30) code: 31394 6-cycles (no 4-cycles).

Therefore, the expected number of small stopping sets is much
higher for the (3,80) code than for the (3,30) code. We insist on
the fact that the 4-cycles do not result from a poor construction,
but from the fact that it is not possible to construct girth 6
regular (3, dc) LDPC codes for dc > 39 [6].

Similarly, for K = 2048 input bits (Figure 3), the lowest
rates R = 0.9 and R = 0.925 show good performance,
whereas the Raptor codes with precodes of higher rates exhibit
an error floor behavior. For K = 4096 input bits (Figure 4,
only the precode of highest rate R = 0.9625 exhibit an error
floor behavior. In fact, all the curves that exhibit an error floor
have a precode with cycles of length 4.

For K = 8192, all precodes are of girth 6, and Fig 5 shows
that the corresponding Raptor codes have similar performance.
This shows that as long as joint optimization using the precode
transfer function is performed, a lower rate precode does not
impact the performance of the Raptor code in the waterfall
region. Note hat none of our simulations show error floors
despite the fact that we do not use Hamming codes.
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Fig. 2. Performance of LDPC precoded Raptor codes of size K=1024

IV. DESIGN OF RAPTOR CODES FOR THE BIAWGNC

In this section, we consider the binary input additive white
Gaussian noise channel (BIAWGNC). We show through simu-
lation results that the approach of rate splitting presented in the
previous section for the BEC is also efficient for this channel.
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Fig. 3. Performance of LDPC precoded Raptor codes of size K=2048

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10−6

10−5

10−4

10−3

10−2

10−1

100

overhead (%)

Fr
am

e 
E

rr
or

 R
at

e

(3,XX) LDPC precoded Raptor codes over BEC (K=4096)

(3,30) − R=0.90
(3,40) − R=0.925
(3,60) − R=0.95
(3,80) − R=0.9625

Fig. 4. Performance of LDPC precoded Raptor codes of size K=4096

A. Asymptotic analysis of LDPC precoded Raptor codes

In [5], we give an asymptotic analysis of the joint decoding
Raptor codes on a BIAWGNC, using Information Content (IC)
evolution under Gaussian Approximation (GA) and treelike
assumption. The messages on the decoding graph are the
log density ratios (LDR) of the probability weights. They
are modeled by a random variable which is assumed to be
Gaussian distributed with mean m and variance σ2 = 2m [9].
Thus, the density of the messages is symmetric.

Assuming that extrinsic information is exchanged between
the precode and the fountain at each decoding iteration, they
track the evolution of the IC of the messages that are related
to the fountain part of the Tanner graph. We denote x

(l)
u (resp.

x
(l)
v ) the IC associated to messages on an edge connecting

a dynamic check node to an input symbol (resp. an input
symbol to a dynamic check node) at the lth decoding iteration.
Moreover, we denote by x

(l−1)
ext the extrinsic information

passed by the LT code to the precode, at the lth decoding
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Fig. 5. Performance of LDPC precoded Raptor codes of size K=8192

iteration, and T (·) : x �→ T (x) the IC transfer function of the
precode. The extrinsic information passed by the precode to
the LT code is then T (x

(l)
ext).

One main result of [5] is the monodimensionnal recursive
equation x

(l)
u = F (x

(l−1)
u , σ2, T (·)) that describes the evo-

lution through one joint decoding iteration of the IC of the
LDRs at the output of the dynamic check nodes (fountain
part). This equation enables to optimize a distribution for a
given transfer function i.e. for a given precode. The reader is
referred to [5] for a more detailed presentation of the analysis
and the optimisation method.

B. Simulation results
We optimized for distributions for two different precodes of

rates R = 0.90 and R = 0.95, and compared Raptor codes
of size K = 1024 and K = 4096 input bits, The simulation
results are reported on figures 6 and 7 show that, similarly
to what has been observed on the BEC, a high rate precode
causes an error floor at very short lengths.

V. CONCLUSION

In this paper, we showed that it is possible to design Raptor
codes that perform well at small lengths on an erasure channel,
by choosing lower rate precodes and decoding the precode and
the LT code jointly. Choosing lower rate precodes gives almost
no asymptotic loss, and therefore no loss in the waterfall
region, but the corresponding Raptor codes do not exhibit
an error floor phenomenon at short lengths. Motivated by the
results on the erasure channel, we showed that the rate splitting
technique remains efficient for the BIAWGN channel.

Lower rate LDPC precodes are less computationally expen-
sive to decode, since complexity is largely due to the average
check node degree. Moreover with our approach, it is not
necessary to concatenate the precode with a Hamming code.
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